A Bayesian Nonparametric Approach to Modeling Mobility Patterns
نویسندگان
چکیده
Constructing models of mobile agents can be difficult without domain-specific knowledge. Parametric models flexible enough to capture all mobility patterns that an expert believes are possible are often large, requiring a great deal of training data. In contrast, nonparametric models are extremely flexible and can generalize well with relatively little training data. We propose modeling the mobility patterns of moving agents as a mixture of Gaussian processes (GP) with a Dirichlet process (DP) prior over mixture weights. The GP provides a flexible representation for each individual mobility pattern, while the DP assigns observed trajectories to particular mobility patterns. Both the GPs and the DP adjust the model’s complexity based on available data, implicitly avoiding issues of over-fitting or under-fitting. We apply our model to a helicopter-based tracking task, where the mobility patterns of the tracked agents—cars—are learned from real data collected from taxis in the greater Boston area.
منابع مشابه
Introducing of Dirichlet process prior in the Nonparametric Bayesian models frame work
Statistical models are utilized to learn about the mechanism that the data are generating from it. Often it is assumed that the random variables y_i,i=1,…,n ,are samples from the probability distribution F which is belong to a parametric distributions class. However, in practice, a parametric model may be inappropriate to describe the data. In this settings, the parametric assumption could be r...
متن کاملModeling a Poisson forest in variable elevations: a nonparametric Bayesian approach.
A nonparametric Bayesian formulation is given to the problem of modeling nonhomogeneous spatial point patterns influenced by concomitant variables. Only incomplete information on the concomitant variables is assumed, consisting of a relatively small number of point measurements. Residual variation, caused by other unmeasured influential factors, is modeled in terms of a spatially varying baseli...
متن کاملGender-based Differences in Associations between Attitude and Self-esteem with Smoking Behavior among Adolescents: A Secondary Analysis Applying Bayesian Nonparametric Functional Latent Variable Model
Background: Different patterns of gender-based relationships between attitude toward smoking and self-esteem with smoking behavior have reported. However, such associations may be much more complex than a simply supposed linear relationship. We aimed to propose a method of providing hand details on the total and gender-based scenarios of the relationships between attitude toward smoking and sel...
متن کاملA Bayesian Approach for the Recognition of Control Chart Patterns
In this research, an iterative approach is employed to recognize and classify control chart patterns. To do this, by taking new observations on the quality characteristic under consideration, the Maximum Likelihood Estimator of pattern parameters is first obtained and then the probability of each pattern is determined. Then using Bayes’ rule, probabilities are updated recursively. Finally, when...
متن کاملBayesian nonparametric analysis of neuronal intensity rates.
We propose a flexible hierarchical Bayesian nonparametric modeling approach to compare the spiking patterns of neurons recorded under multiple experimental conditions. In particular, we showcase the application of our statistical methodology using neurons recorded from the supplementary eye field region of the brains of two macaque monkeys trained to make delayed eye movements to three differen...
متن کامل